ACID-CATALYSED REACTIONS OF 3,5-DIALKYL-SPIRO[2.5]OCTA-2,5-DIEN-4-ONES

By R.S. Ward and K.S. Thatcher.

Chemistry Department, University College of Swansea, Singleton Park, Swansea SA2 8PP.

<u>SUMMARY</u>. Acid-catalysed ring opening of the spirodienones ($\underline{2a}$) and ($\underline{2b}$) using p-toluene-sulphonic acid affords the styrene derivatives ($\underline{3a}$) and ($\underline{3b}$), while treatment with acetic anhydride/H₂SO₄ affords the furan derivatives (4a) and (4b).

Considerable attention has over the years been directed towards investigating the rearrangement reactions of spirodienones. $^{1-6}$ As a contribution to our understanding of the mechanisms of such reactions we have studied the acid-catalysed reactions of the spirocyclopropyl-cyclohexa-2,5-dienones $(\underline{2a})^7$ and $(\underline{2b})$, which were prepared using a known procedure by reacting 3,5-dialkylbenzene-1,4-diazooxides $(\underline{1a})^8$ and $(\underline{1b})^9$ with trans-dibenzoylethylene.

Treatment of $(\underline{2a})$ with p-toluenesulphonic acid in refluxing toluene gave an orange crystalline solid (40% yield), m.p. 218-20°, M⁺ 356.1410 ($C_{24}H_{20}O_{3}$), $V_{\text{max}}^{\text{KBr}}$ 3480, 1673 and 1636 cm⁻¹. The ^{1}H n.m.r. spectrum of this compound was consistent with structure ($\underline{3a}$), as indeed was the ^{13}C n.m.r. spectrum (Table 1) which showed two carbonyl carbon atoms at 187.7 and 197.3 p.p.m. in addition to the expected signals due to the aromatic, olefinic and methyl carbon atoms. The ^{1}H and ^{13}C n.m.r. spectra further showed that the phenolic ring was symmetrically substituted since only one methyl signal was observed in each case.

Treatment of $(\underline{2b})$ with p-toluenesulphonic acid under the same conditions gave an analogous product $(\underline{3b})$, m.p. 196-8°, M. 440.2350 ($C_{30}H_{32}O_3$), v_{max}^{KBr} 3520 and 1662 cm⁻¹.

In contrast, when (2a) and (2b) were allowed to react with acetic anhydride containing a trace of sulphuric acid at room temperature two entirely different products were obtained. Thus, (2a) gave a white crystalline solid (40% yield), m.p. 177-8°, M. 440.1624 ($C_{28}H_{24}O_5$), v_{max}^{KBr} 1761, 1638 cm⁻¹. The infrared spectrum showed the presence of an acetate group but gave no indication of the presence of benzoyl or dienone groups. This was confirmed by the ^{13}C n.m.r. spectrum (Table 1) which gave n

peaks below 168.5 p.p.m. The presence of two acetyl groups was indicated by both the ^{1}H and ^{13}C n.m.r. spectra and was also confirmed by the mass spectrum which contained prominent ions at $\underline{\text{m/e}}$ 398 and 356 corresponding to the successive loss of two molecules of ketene. Structure (4a) is therefore assigned to this product. A similar product (4b), m.p. $148\text{-}150^{\circ}$, M⁺ 524.2563 ($\text{C}_{34}\text{H}_{36}\text{O}_{5}$), $\text{V}_{\text{max}}^{\text{KBr}}$ 1752, 1700 cm⁻¹, was also obtained from (2b).

Table 1. 13C n.m.r. data.

	(<u>2a</u>) a	(<u>2b</u>) ^a	(<u>3a</u>) ^b	$(\underline{3b})^a$		(<u>4a</u>) a	(<u>4b</u>) ^a
1	41.34	41.22	124.85	126.13	1"	130.59	130.64
2/6	138,50	135.08	128.98	124.67	2"/6"	129.65	127.64
3/5	139.28	151.41	124.90	137.73	3"/5"	130.74	142.85
4	186.30	185.38	155.75	156.58	4"	146.63	146.81
7	39.02	39.61	156.51	157.42	3	135.14	134.91
8		35,01	117.25	117.98	4	119.28	119.84
СО	193.22	193.52	187.70	188.08	2	140.86	141.07
		100.02	197.30	198.34	5	148.05	147.59
1'	136.86	137.06	5 136.11	136.60	' 1' S	128.41	128.49
_		107.00	137.10	130.00		129.36	129.42
2'6'	128.48	128.41	127.93	128.37	2'6'	124.14	124.17
		120,,12	128.02	120.57		125.63	125.92
3'/5'	128.90	128.84	128.49	128.55	31/51	128.75	128.73
- , -		7777	128.75	120,00	3,3	128.75	128.73
4'	133.94	133.81	133.01	132.93	4'	127.53	127.64
•		100.01	133.21		7 7	127.74	127.79
Me	16.49	-	16.58	-	Me	16.35	-
Bu ^t	ς -	29.28	-	30.01	Bu ^t	-	31.50
	ζ -	35.35	-	34.39	7	_	35.52
					1	- 168.53	168.52
		_			OAc	100,55	170.70
		•				20.46	20.66
						20.61	22.65

a CDC1₃

b d₆-DMSO

These reactions demonstrate the preference for ring opening rather than dienone-phenol rearrangement in spiro[2.5]octa-2,5-dienones^{1,6} and also illustrate a divergence in reaction pathway depending upon whether or not a nucleophilic counterion is present.

References

- 1. S. Winstein and R. Baird, J.Amer.Chem.Soc., 1957, 69, 4238 and 1963, 85, 567.
- 2. N.L. Wendler, in "Molecular Rearrangements", ed. P. de Mayo, Wiley-Interscience, New York, 1964, p.1028.
- 3. A.J. Waring, Adv. Alicycl.Chem., 1966, <u>1</u>, 129.
- 4. A.M. Choudhury, K. Schofield and R.S. Ward, J.Chem.Soc. (C), 1970, 2543.
- 5. R.S. Ward, Chem. in Britain, 1973, 9, 444.
- 6. L.H. Schwartz, R.V. Flor and V.P. Gullo, J.Org.Chem., 1974, 39, 219.
- 7. J.C. Fleming and H. Schechter, J. Org. Chem., 1969, 34, 3962.
- 8. W. Ried and R. Dietrich, Chem. Ber., 1961, 94, 387.
- 9. G.F. Koser and W.H. Pirkle, J.Org.Chem., 1967, 32, 1992.

(Received in UK 21 September 1981)